吴凡 1,2翟东升 1,3,4李祝莲 1,3,4汤儒峰 1[ ... ]李语强 1,3,4
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650216
2 中国科学院大学,北京 100049
3 中国科学院空间目标与碎片观测重点实验室,江苏 南京 210023
4 云南省太阳物理与空间目标监测重点实验室,云南 昆明 650216
在激光测距过程中,实时获取激光发射功率数据可为后续数据精度处理分析及激光测距系统故障点排查提供重要依据。通过实时测量激光发射链路中的反射镜透射光,利用前期获取的反射镜透射光与反射镜反射光之间的对应关系,采取相对测量的方式获取实时的反射光功率,达到实时监测激光发射功率的效果,并基于中国科学院云南天文台53 cm双筒望远镜激光测距系统搭建实验平台进行验证。实验结果表明,该激光功率实时监测方法能够在激光发射链路无损耗的前提下实时获取激光发射功率;反射光功率与透射光功率具有良好的线性关系,其Spearman相关系数为0.9991,线性关系稳定可靠,满足长时间激光测距的需求;验证了该方法的可行性,可适用于各类空间目标激光测距的激光功率实时监测中。
激光测距 激光功率实时监测 相对测量 库德光路 laser ranging real-time laser power monitoring relative measurement Coude optical system 
红外与激光工程
2023, 52(10): 20230109
Author Affiliations
Abstract
1 Group of Applied Astronomy, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China
2 Key Laboratory of Space Object & Debris Observation, PMO, CAS, Nanjing 210008, China
Space Debris Laser Ranging (DLR) is a technique to measure range to defunct satellites, rocket bodies or other space targets in orbits around Earth. The analysis shows that one of the reasons for the low success probability of DLR is the inaccurate orbital prediction of targets. Then it is proposed to use the Superconducting Nanowire Single-Photon Detector (SNSPD) running in automatic-recoverable range-gate-free mode, in which case, the effect of the accuracy of the target’s orbital prediction on the success probability of DLR is greatly reduced. In this way, 249 space debris were successfully detected and 532 passes of data were obtained. The smallest target detected was the space-debris (902) with an orbital altitude of about 1000 km and a Radar Cross Section (RCS) of 0.0446 m2. The farthest target detected was the space-debris (12,445) with a large elliptical orbit and an RCS of 18.2505 m2, of which the range of the normal point (NPT) of the measured arc-segment on January 27, 2019 was 6260.805 km.
Space Debris Laser Ranging The success probability of DLR Range-gate-free mode Superconducting Nanowire Single-Photon Detector 
Journal of the European Optical Society-Rapid Publications
2023, 19(1): 2023002
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650216
2 中国科学院大学,北京 100049
3 中国科学院空间目标与碎片观测重点实验室,江苏 南京 210023
在月球激光测距与空间目标白天激光测距中,强烈的背景噪声会大幅降低测距成功率,在云南天文台1.2 m望远镜激光测距系统的接收光路中加入可调视场光阑,通过改变视场光阑孔径大小来调整接收视场,可减少背景噪声。但受到速度光行差等因素的影响,在接收视场减小到几个角秒时,回波会被光阑挡住无法通过,探测器接收不到回波信号。为解决这一问题,提出在视场光阑前加入二维偏转摆镜的方法,控制摆镜偏转使偏离的回波通过光阑中心被探测器正常接收。以高轨卫星和同步轨道卫星为目标,测量了回波信号偏离视场中心的角度值,并仿真分析了使用摆镜校正偏离角度值的效果。结果表明,该方法可以在小视场激光测距时快速高精度校正回波信号,可为满月时月球激光测距与空间目标白天激光测距提供支持。
仪器,测量与计量 激光测距 接收系统 摆镜 仿真分析 
激光与光电子学进展
2023, 60(17): 1712003
李知非 1,2汤儒峰 1,*翟东升 1,3,4李祝莲 1,3,4[ ... ]李语强 1,3,4
作者单位
摘要
1 中国科学院云南天文台,昆明 650216
2 中国科学院大学,北京 100049
3 中国科学院空间目标与碎片观测重点实验室,南京 210023
4 云南省太阳物理与空间目标监测重点实验室,昆明 650216
5 乐山师范学院 数理学院,乐山 614000
为了降低卫星激光测距中存在的漂移误差,基于卫星激光测距所获得的实测数据推算了卫星回波光子数,结合仿真分析了漂移误差产生的原因与计算方法,将计算得到的漂移误差补偿到测距结果中。选择特定目标持续五年的卫星激光测距数据,用所提方法对测量距离进行修正,修正值为10 ps量级~100 ps量级,最高可在测距数据中补偿掉770 ps的漂移误差。结果表明,使用该方法可以有效降低每圈数据的数据波动,减小了数据中由于能量变化导致的漂移误差,提高了数据质量。
激光测距 单光子探测 漂移误差 数据处理 测距精度 Laser ranging Single photon detection Walk error Data processing Ranging accuracy 
光子学报
2023, 52(5): 0552222
作者单位
摘要
1 道路施工技术与装备教育部重点实验室(长安大学),陕西西安70064
2 柳州欧维姆机械股份有限公司,广西柳州545006
针对机器视觉系统中透视投影导致的钢管、桥梁拉索等圆柱表面缺陷测量不准的问题,提出了一种圆柱曲面透视投影失真的图像校正方法。该方法在提取圆柱成像区域、明确横向和轴向方向的基础上,基于圆柱曲面的透视投影特性,将产生的失真分解为轴向变形和横向变形,利用系统成像参数和圆柱半径建立校正图像与原图像的坐标对应关系,通过最邻近插值法进行像素映射实现透视投影失真校正。实验结果表明,该方法对不同直径圆柱的图像均有良好的校正效果,校正后的图像消除了圆柱曲面“近大远小”透视变形和倾斜投影变形;进行棋盘格模拟校正时,6个圆柱棋盘格边长的测量误差从校正前最高的14.9%降低至校正后的1.2%;进行划痕测量时,两种直径的原图像的最大误差分别为78.0%与61.8%,经本文方法校正后,两种直径的最大误差仅为5.9%与5.5%,校正效果显著。
图像校正 圆柱曲面 透视投影 失真 测量 image correction cylindrical surface perspective projection distortion measurement 
光学 精密工程
2023, 31(11): 1691
杨梦雪 1,2李祝莲 1,3,*李语强 1,3
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650216
2 中国科学院大学,北京 100049
3 中国科学院空间目标与碎片观测重点实验室,江苏 南京 210034
结合当今技术的发展状况,针对台站观测任务数量多、问题建模难、求解复杂度高等问题,提出了一种基于贪婪算法与动态规划算法融合的改进贪婪动态规划算法。该算法首先将调度问题划分成几个子问题,然后根据约束条件以最大化观测收益为目标函数对问题进行迭代求解,进而生成近似最优观测计划。实验结果表明,该算法在解决观测任务调度问题时具有一定的可行性和实用性,并为下一步建立台站自动化运行系统奠定坚实的基础。
遥感 卫星激光测距 任务优化 贪婪算法 动态规划 
激光与光电子学进展
2023, 60(7): 0728001
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650216
2 中国科学院大学,北京 100049
3 中国科学院空间目标与碎片观测重点实验室,江苏 南京 210034
望远镜自动调焦技术在提高天文观测效率和观测精度方面有着重要的作用。针对云南天文台1.2 m望远镜系统在观测空间目标时受外界多重因素影响下的像点离散、能量分散等问题,提出了一种改进定心精度的半通量直径(HFD-ICA)实时自动调焦清晰度评价算法。该方法在进行图像预处理的基础上,采用改进的强度加权质心法(improved IWC),以亚毫米的精度迭代计算星像质心;然后测出星像HFD,根据HFD值用双曲线法拟合出V型调焦曲线。经过大量实验表明,该算法在指导望远镜调焦时能够迅速找到焦点位置,其精确定焦率与高精度天文图像处理软件IRAF的计算结果相当,在调焦过程中平均处理时长为4.7 s,耗时仅为IRAF的1/10,满足1.2 m望远镜自动调焦的实时性与精度要求。所提方法的调焦效率大致提高37%,具有一定的可行性与实用性。
测量 自动调焦 望远镜 图像清晰度 评价算法 
光学学报
2023, 43(6): 0612006
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650216
2 中国科学院大学,北京 100049
深空激光测距受距离遥远、大气损耗等因素影响,地面站接收到的回波光子数非常稀少,因此,研究增加回波光子数的方法对提高系统测距成功概率具有重要的意义。文中在云南天文台1.2 m望远镜激光测距系统发射光路中增加摆镜,通过快速高精度控制激光光束传播方向的方法搜索回波光子数较多的指向位置。首先设计了摆镜扫描系统,然后对系统进行仿真分析,模拟系统出射光束偏转角度和能量分布随摆镜偏转角度的变化情况以及利用摆镜进行搜索的效果,最后对测距卫星进行实际观测试验。测量得到系统使用的二维摆镜的最小分辨率为0.2″,经激光发射系统扩束后,可以实现最小0.005″的搜索步长,控制频率在100 Hz以上。实际观测结果表明,使用摆镜提高回波率的方法是有效的,并且目标轨道高度越高效果越明显,因此可应用于深空目标激光测距系统。
激光测距 摆镜 发射光路 目标搜索 lasering ranging tip/tilt mirror transmitting optical path target search 
红外与激光工程
2022, 51(8): 20210732
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650216
2 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
3 中国科学院大学天文与空间科学学院,北京 100049
月球激光测距(LLR)极大推动了地月科学、月球空间基准以及引力物理的发展。为了充分利用LLR数据,依据目前广泛应用的国际地球自转服务2010(IERS 2010)规范对固体潮、海潮、大气延迟和广义相对论效应进行建模,并建立了LLR观测模型。利用该模型检核了国际激光测距服务(ILRS)提供的所有LLR观测数据,生成的月球角反射器预报文件CPF(Consolidated prediction format)支持云南天文台LLR的独立观测。将INPOP19a、DE430、EPM2017历表作为观测模型输入并检核LLR标准点数据,结果表明,相比其他历表,INPOP19a历表与实测数据更接近。
测量与计量 月球激光测距 观测模型 历表 国际地球自转服务 
激光与光电子学进展
2022, 59(19): 1912003
李祝莲 1,2翟东升 1,2,*汤儒峰 1张海涛 1[ ... ]李语强 1,2
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650216
2 中国科学院空间目标与碎片观测重点实验室,江苏 南京 210023
为了提高中国科学院云南天文台1.2 m望远镜激光测距平台对空间碎片的监测能力,开展了白天空间碎片激光测距技术与方法研究。首先,分析了利用云南天文台现有的1.2 m望远镜激光测距试验平台开展白天空间碎片激光测距的可行性。然后,对白天空间碎片激光测距关键问题进行了分析并提出解决措施。通过白天空间碎片激光测距试验,获得了一部分空间碎片激光测距数据,所测量空间碎片的雷达散射截面范围为9.0~20.0 m2、近地点范围为400~900 km、远地点范围为500~900 km。结果表明:云南天文台空间碎片激光测距平台具备空间碎片白天激光测距的潜力,可为后续开展全天时空间碎片激光测距研究提供技术支持。
测量 激光测距 空间碎片白天激光测距 单光子探测技术 
激光与光电子学进展
2022, 59(11): 1112003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!